1996 USAMO Problems
Contents
Day 1
Problem 1
Prove that the average of the numbers is
.
Problem 2
For any nonempty set of real numbers, let
denote the sum of the elements of
. Given a set
of
positive integers, consider the collection of all distinct sums
as
ranges over the nonempty subsets of
. Prove that this collection of sums can be partitioned into
classes so that in each class, the ratio of the largest sum to the smallest sum does not exceed 2.
Problem 3
Let be a triangle. Prove that there is a line
(in the plane of triangle
) such that the intersection of the interior of triangle
and the interior of its reflection
in
has area more than
the area of triangle
.
Day 2
Problem 4
An -term sequence
in which each term is either 0 or 1 is called a binary sequence of length
. Let
be the number of binary sequences of length
containing no three consecutive terms equal to 0, 1, 0 in that order. Let
be the number of binary sequences of length
that contain no four consecutive terms equal to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. Prove that
for all positive integers
.
Problem 5
Let be a triangle, and
an interior point such that
,
,
and
. Prove that the triangle is isosceles.
Problem 6
Determine (with proof) whether there is a subset of the integers with the following property: for any integer
there is exactly one solution of
with
.
See Also
1996 USAMO (Problems • Resources) | ||
Preceded by 1995 USAMO |
Followed by 1997 USAMO | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.