2005 USAMO Problems
Contents
Day 1
Problem 1
(Zuming Feng) Determine all composite positive integers for which it is possible to arrange all divisors of
that are greater than 1 in a circle so that no two adjacent divisors are relatively prime.
Problem 2
(Răzvan Gelca) Prove that the
system
has no solutions in integers
,
, and
.
Problem 3
(Zuming Feng) Let be an acute-angled triangle, and let
and
be two points on side
. Construct point
in such a way that convex quadrilateral
is cyclic,
, and
and
lie on opposite sides of line
. Construct point
in such a way that convex quadrilateral
is cyclic,
, and
and
lie on opposite sides of line
. Prove that points
, and
lie on a circle.
Day 2
Problem 4
Legs of a square table each have length
, where
is a positive integer. For how many ordered 4-tuples
of nonnegative integers can we cut a piece of length
from the end of leg
and still have a stable table?
(The table is stable if it can be placed so that all four of the leg ends touch the floor. Note that a cut leg of length 0 is permitted.)
Problem 5
Let be an integer greater than 1. Suppose
points are given in the plane, no three of which are collinear. Suppose
of the given
points are colored blue and the other
colored red. A line in the plane is called a balancing line if it passes through one blue and one red point and, for each side of the line, the number of blue points on that side is equal to the number of red points on the same side.
Prove that there exist at least two balancing lines.
Problem 6
For a positive integer, let
be the sum of the digits of
. For
, let
be the minimal
for which there exists a set
of
positive integers such that
for any nonempty subset
. Prove that there are constants
with
Resources
- 2005 USAMO Day 1 Problems
- 2005 USAMO Day 2 Problems
- 2005 USAMO Solutions
- USAMO Problems on the Resources page
2005 USAMO (Problems • Resources) | ||
Preceded by 2004 USAMO |
Followed by 2006 USAMO | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.