Angle bisector theorem
This is an AoPSWiki Word of the Week for June 6-12 |
Introduction & Formulas
The Angle bisector theorem states that given triangle and angle bisector AD, where D is on side BC, then
. It follows that
. Likewise, the converse of this theorem holds as well.
Further by combining with Stewart's theorem it can be shown that
Proof
By the Law of Sines on and
,
First, because is an angle bisector, we know that
and thus
, so the denominators are equal.
Second, we observe that and
.
Therefore,
, so the numerators are equal.
It then follows that
Examples & Problems
- Let ABC be a triangle with angle bisector AD with D on line segment BC. If
and
, find AB and AC.
Solution: By the angle bisector theorem,or
. Plugging this into
and solving for AC gives
. We can plug this back in to find
.
- In triangle ABC, let P be a point on BC and let
. Find the value of
.
Solution: First, we notice that. Thus, AP is the angle bisector of angle A, making our answer 0.
- Part (b), 1959 IMO Problems/Problem 5.