GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

2018 AMC 12B Problems

Revision as of 15:36, 28 October 2021 by MRENTHUSIASM (talk | contribs) (Problem 23)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
2018 AMC 12B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Kate bakes a $20$-inch by $18$-inch pan of cornbread. The cornbread is cut into pieces that measure $2$ inches by $2$ inches. How many pieces of cornbread does the pan contain?

$\textbf{(A) } 90 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 180 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 360$

Solution

Problem 2

Sam drove $96$ miles in $90$ minutes. His average speed during the first $30$ minutes was $60$ mph (miles per hour), and his average speed during the second $30$ minutes was $65$ mph. What was his average speed, in mph, during the last $30$ minutes?

$\textbf{(A) } 64 \qquad \textbf{(B) } 65 \qquad \textbf{(C) } 66 \qquad \textbf{(D) } 67 \qquad \textbf{(E) } 68$

Solution

Problem 3

A line with slope $2$ intersects a line with slope $6$ at the point $(40,30)$. What is the distance between the $x$-intercepts of these two lines?

$\textbf{(A) } 5 \qquad \textbf{(B) } 10 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 25 \qquad \textbf{(E) } 50$

Solution

Problem 4

A circle has a chord of length $10$, and the distance from the center of the circle to the chord is $5$. What is the area of the circle?

$\textbf{(A) }25\pi \qquad \textbf{(B) }50\pi \qquad \textbf{(C) }75\pi \qquad \textbf{(D) }100\pi \qquad \textbf{(E) }125\pi \qquad$

Solution

Problem 5

How many subsets of $\{2,3,4,5,6,7,8,9\}$ contain at least one prime number?

$\textbf{(A) } 128 \qquad \textbf{(B) } 192 \qquad \textbf{(C) } 224 \qquad \textbf{(D) } 240 \qquad \textbf{(E) } 256$

Solution

Problem 6

Suppose $S$ cans of soda can be purchased from a vending machine for $Q$ quarters. Which of the following expressions describes the number of cans of soda that can be purchased for $D$ dollars, where $1$ dollar is worth $4$ quarters?

$\textbf{(A) } \frac{4DQ}{S} \qquad \textbf{(B) } \frac{4DS}{Q} \qquad \textbf{(C) } \frac{4Q}{DS} \qquad \textbf{(D) } \frac{DQ}{4S} \qquad \textbf{(E) } \frac{DS}{4Q}$

Solution

Problem 7

What is the value of \[\log_37\cdot\log_59\cdot\log_711\cdot\log_913\cdots\log_{21}25\cdot\log_{23}27?\] $\textbf{(A) } 3 \qquad \textbf{(B) } 3\log_{7}23 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 10$

Solution

Problem 8

Line segment $\overline{AB}$ is a diameter of a circle with $AB = 24$. Point $C$, not equal to $A$ or $B$, lies on the circle. As point $C$ moves around the circle, the centroid (center of mass) of $\triangle ABC$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?

$\textbf{(A) } 25 \qquad \textbf{(B) } 38  \qquad \textbf{(C) } 50  \qquad \textbf{(D) } 63 \qquad \textbf{(E) } 75$

Solution

Problem 9

What is \[\sum^{100}_{i=1} \sum^{100}_{j=1} (i+j) ?\]

$\textbf{(A) }100{,}100 \qquad \textbf{(B) }500{,}500\qquad \textbf{(C) }505{,}000 \qquad \textbf{(D) }1{,}001{,}000 \qquad \textbf{(E) }1{,}010{,}000 \qquad$

Solution

Problem 10

A list of $2018$ positive integers has a unique mode, which occurs exactly $10$ times. What is the least number of distinct values that can occur in the list?

$\textbf{(A) }202 \qquad \textbf{(B) }223 \qquad \textbf{(C) }224 \qquad \textbf{(D) }225 \qquad \textbf{(E) }234 \qquad$

Solution

Problem 11

A closed box with a square base is to be wrapped with a square sheet of wrapping paper. The box is centered on the wrapping paper with the vertices of the base lying on the midlines of the square sheet of paper, as shown in the figure on the left. The four corners of the wrapping paper are to be folded up over the sides and brought together to meet at the center of the top of the box, point $A$ in the figure on the right. The box has base length $w$ and height $h$. What is the area of the sheet of wrapping paper?

[asy] size(270pt); defaultpen(fontsize(10pt)); filldraw(((3,3)--(-3,3)--(-3,-3)--(3,-3)--cycle),lightgrey); dot((-3,3)); label("$A$",(-3,3),NW); draw((1,3)--(-3,-1),dashed+linewidth(.5)); draw((-1,3)--(3,-1),dashed+linewidth(.5)); draw((-1,-3)--(3,1),dashed+linewidth(.5)); draw((1,-3)--(-3,1),dashed+linewidth(.5)); draw((0,2)--(2,0)--(0,-2)--(-2,0)--cycle,linewidth(.5)); draw((0,3)--(0,-3),linetype("2.5 2.5")+linewidth(.5)); draw((3,0)--(-3,0),linetype("2.5 2.5")+linewidth(.5)); label('$w$',(-1,-1),SW); label('$w$',(1,-1),SE); draw((4.5,0)--(6.5,2)--(8.5,0)--(6.5,-2)--cycle); draw((4.5,0)--(8.5,0)); draw((6.5,2)--(6.5,-2)); label("$A$",(6.5,0),NW); dot((6.5,0)); [/asy]

$\textbf{(A) } 2(w+h)^2 \qquad \textbf{(B) } \frac{(w+h)^2}2 \qquad \textbf{(C) } 2w^2+4wh \qquad \textbf{(D) } 2w^2 \qquad \textbf{(E) } w^2h$

Solution

Problem 12

Side $\overline{AB}$ of $\triangle ABC$ has length $10$. The bisector of angle $A$ meets $\overline{BC}$ at $D$, and $CD = 3$. The set of all possible values of $AC$ is an open interval $(m,n)$. What is $m+n$?

$\textbf{(A) }16 \qquad \textbf{(B) }17 \qquad \textbf{(C) }18 \qquad \textbf{(D) }19 \qquad \textbf{(E) }20 \qquad$

Solution

Problem 13

Square $ABCD$ has side length $30$. Point $P$ lies inside the square so that $AP = 12$ and $BP = 26$. The centroids of $\triangle{ABP}$, $\triangle{BCP}$, $\triangle{CDP}$, and $\triangle{DAP}$ are the vertices of a convex quadrilateral. What is the area of that quadrilateral?

[asy] unitsize(120); pair B = (0, 0), A = (0, 1), D = (1, 1), C = (1, 0), P = (1/4, 2/3); draw(A--B--C--D--cycle); dot(P); defaultpen(fontsize(10pt)); draw(A--P--B); draw(C--P--D); label("$A$", A, W); label("$B$", B, W); label("$C$", C, E); label("$D$", D, E); label("$P$", P, N*1.5+E*0.5); dot(A); dot(B); dot(C); dot(D); [/asy]

$\textbf{(A) }100\sqrt{2}\qquad\textbf{(B) }100\sqrt{3}\qquad\textbf{(C) }200\qquad\textbf{(D) }200\sqrt{2}\qquad\textbf{(E) }200\sqrt{3}$

Solution

Problem 14

Joey and Chloe and their daughter Zoe all have the same birthday. Joey is $1$ year older than Chloe, and Zoe is exactly $1$ year old today. Today is the first of the $9$ birthdays on which Chloe's age will be an integral multiple of Zoe's age. What will be the sum of the two digits of Joey's age the next time his age is a multiple of Zoe's age?

$\textbf{(A) }7 \qquad \textbf{(B) }8 \qquad \textbf{(C) }9 \qquad \textbf{(D) }10 \qquad \textbf{(E) }11 \qquad$

Solution

Problem 15

How many odd positive $3$-digit integers are divisible by $3$ but do not contain the digit $3$?

$\textbf{(A) } 96 \qquad \textbf{(B) } 97 \qquad \textbf{(C) } 98 \qquad \textbf{(D) } 102 \qquad \textbf{(E) } 120$

Solution

Problem 16

The solutions to the equation $(z+6)^8=81$ are connected in the complex plane to form a convex regular polygon, three of whose vertices are labeled $A,B,$ and $C$. What is the least possible area of $\triangle ABC?$

$\textbf{(A) } \frac{1}{6}\sqrt{6} \qquad \textbf{(B) } \frac{3}{2}\sqrt{2}-\frac{3}{2} \qquad \textbf{(C) } 2\sqrt3-3\sqrt2 \qquad \textbf{(D) } \frac{1}{2}\sqrt{2} \qquad \textbf{(E) } \sqrt 3-1$

Solution

Problem 17

Let $p$ and $q$ be positive integers such that \[\frac{5}{9} < \frac{p}{q} < \frac{4}{7}\]and $q$ is as small as possible. What is $q-p$?

$\textbf{(A) } 7 \qquad \textbf{(B) } 11 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 17 \qquad \textbf{(E) } 19$

Solution

Problem 18

A function $f$ is defined recursively by $f(1)=f(2)=1$ and \[f(n)=f(n-1)-f(n-2)+n\]for all integers $n \geq 3$. What is $f(2018)$?

$\textbf{(A) } 2016 \qquad \textbf{(B) } 2017 \qquad \textbf{(C) } 2018 \qquad \textbf{(D) } 2019 \qquad \textbf{(E) } 2020$

Solution

Problem 19

Mary chose an even $4$-digit number $n$. She wrote down all the divisors of $n$ in increasing order from left to right: $1,2,\ldots,\dfrac{n}{2},n$. At some moment Mary wrote $323$ as a divisor of $n$. What is the smallest possible value of the next divisor written to the right of $323$?

$\textbf{(A) } 324 \qquad \textbf{(B) } 330 \qquad \textbf{(C) } 340 \qquad \textbf{(D) } 361 \qquad \textbf{(E) } 646$

Solution

Problem 20

Let $ABCDEF$ be a regular hexagon with side length $1$. Denote by $X$, $Y$, and $Z$ the midpoints of sides $\overline {AB}$, $\overline{CD}$, and $\overline{EF}$, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of $\triangle ACE$ and $\triangle XYZ$?

$\textbf{(A)}\ \frac {3}{8}\sqrt{3} \qquad \textbf{(B)}\ \frac {7}{16}\sqrt{3} \qquad \textbf{(C)}\ \frac {15}{32}\sqrt{3} \qquad  \textbf{(D)}\ \frac {1}{2}\sqrt{3} \qquad \textbf{(E)}\ \frac {9}{16}\sqrt{3}$

Solution

Problem 21

In $\triangle{ABC}$ with side lengths $AB = 13$, $AC = 12$, and $BC = 5$, let $O$ and $I$ denote the circumcenter and incenter, respectively. A circle with center $M$ is tangent to the legs $AC$ and $BC$ and to the circumcircle of $\triangle{ABC}$. What is the area of $\triangle{MOI}$?

$\textbf{(A)}\ \frac52\qquad\textbf{(B)}\ \frac{11}{4}\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ \frac{13}{4}\qquad\textbf{(E)}\ \frac72$

Solution

Problem 22

Consider polynomials $P(x)$ of degree at most $3$, each of whose coefficients is an element of $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. How many such polynomials satisfy $P(-1) = -9$?

$\textbf{(A) } 110 \qquad \textbf{(B) } 143 \qquad \textbf{(C) } 165 \qquad \textbf{(D) } 220 \qquad \textbf{(E) } 286$

Solution

Problem 23

Ajay is standing at point $A$ near Pontianak, Indonesia, $0^\circ$ latitude and $110^\circ \text{ E}$ longitude. Billy is standing at point $B$ near Big Baldy Mountain, Idaho, USA, $45^\circ \text{ N}$ latitude and $115^\circ \text{ W}$ longitude. Assume that Earth is a perfect sphere with center $C.$ What is the degree measure of $\angle ACB?$

$\textbf{(A) }105 \qquad \textbf{(B) }112\frac{1}{2} \qquad \textbf{(C) }120 \qquad \textbf{(D) }135 \qquad \textbf{(E) }150 \qquad$

Solution

Problem 24

Let $\lfloor x \rfloor$ denote the greatest integer less than or equal to $x$. How many real numbers $x$ satisfy the equation $x^2 + 10,000\lfloor x \rfloor = 10,000x$?

$\textbf{(A) } 197 \qquad \textbf{(B) } 198 \qquad \textbf{(C) } 199 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 201$

Solution

Problem 25

Circles $\omega_1$, $\omega_2$, and $\omega_3$ each have radius $4$ and are placed in the plane so that each circle is externally tangent to the other two. Points $P_1$, $P_2$, and $P_3$ lie on $\omega_1$, $\omega_2$, and $\omega_3$ respectively such that $P_1P_2=P_2P_3=P_3P_1$ and line $P_iP_{i+1}$ is tangent to $\omega_i$ for each $i=1,2,3$, where $P_4 = P_1$. See the figure below. The area of $\triangle P_1P_2P_3$ can be written in the form $\sqrt{a}+\sqrt{b}$ for positive integers $a$ and $b$. What is $a+b$?

[asy] unitsize(12); pair A = (0, 8/sqrt(3)), B = rotate(-120)*A, C = rotate(120)*A; real theta = 41.5; pair P1 = rotate(theta)*(2+2*sqrt(7/3), 0), P2 = rotate(-120)*P1, P3 = rotate(120)*P1; filldraw(P1--P2--P3--cycle, gray(0.9)); draw(Circle(A, 4)); draw(Circle(B, 4)); draw(Circle(C, 4)); dot(P1); dot(P2); dot(P3); defaultpen(fontsize(10pt)); label("$P_1$", P1, E*1.5); label("$P_2$", P2, SW*1.5); label("$P_3$", P3, N); label("$\omega_1$", A, W*17); label("$\omega_2$", B, E*17); label("$\omega_3$", C, W*17); [/asy]

$\textbf{(A) }546\qquad\textbf{(B) }548\qquad\textbf{(C) }550\qquad\textbf{(D) }552\qquad\textbf{(E) }554$

Solution

See also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
2018 AMC 12A Problems
Followed by
2019 AMC 12A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png