1978 USAMO Problems/Problem 1
Problem
Given that are real numbers such that
,
.
Determine the maximum value of .
Solution 1
By Cauchy Schwarz, we can see that
thus
Finally,
which means
so the maximum value of
is
.
from: Image from Gon Mathcenter.net
Solution 2
Seeing as we have an inequality with constraints, we can use Lagrange multipliers to solve this problem. We get the following equations:
If , then
according to
and
according to
, so
. Setting the right sides of
and
equal yields
. Similar steps yield that
. Thus,
becomes
and
becomes
. Solving the system yields
, so the maximum possible value of
is
.
Solution 3
A re-writing of Solution 1 to avoid the use of Cauchy Schwarz. We have
and
The second equation times 4, then minus the first equation,
The rest follows.
J.Z.
Solution 4
By the Principle of Insufficient Reasons, since are indistinguishable variables, the maximum of
is acheived when
, so we have
.
~Ddk001
- Note: For some reason I think this solution is missing something.
See Also
1978 USAMO (Problems • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.