2005 AIME I Problems/Problem 13
Problem
A particle moves in the Cartesian plane according to the following rules:
- From any lattice point
the particle may only move to
or
- There are no right angle turns in the particle's path.
How many different paths can the particle take from to
?
Solution
Solution 1
The length of the path (the number of times the particle moves) can range from to
; notice that
gives the number of diagonals. Let
represent a move to the right,
represent a move upwards, and
to be a move that is diagonal. Casework upon the number of diagonal moves:
- Case
: It is easy to see only
cases.
- Case
: There are two diagonals. We need to generate a string with
's,
's, and
's such that no two
's or
's are adjacent. The
's split the string into three sections (
): by the Pigeonhole principle all of at least one of the two letters must be all together (i.e., stay in a row).
- If both
and
stay together, then there are
ways.
- If either
or
splits, then there are
places to put the letter that splits, which has
possibilities. The remaining letter must divide into
in one section and
in the next, giving
ways. This totals
ways.
- Case
: Now
's,
's, and
's, so the string is divided into
partitions (
).
- If the
's and
's stay together, then there are
places to put them.
- If one of them splits and the other stays together, then there are
places to put them, and
ways to pick which splits, giving
ways.
- If both groups split, then there are
ways to arrange them. These add up to
ways.
- Case
: Now
,
,
's (
). There are
places to put
,
places to put
, giving
ways.
- Case
: It is easy to see only
case.
Together, these add up to .
Solution 2
Another possibility is to use block-walking and recursion: for each vertex, the number of ways to reach it is , where
is the number of ways to reach the vertex from the left (without having come to that vertex (the one on the left) from below),
is the number of ways to reach the vertex from the vertex diagonally down and left, and
is the number of ways to reach the vertex from below (without having come to that vertex (the one below) from the left).
Assign to each point the triplet
. Let
. Let all lattice points that contain exactly one negative coordinate be assigned to
. This leaves the lattice points of the first quadrant, the positive parts of the
and
axes, and the origin unassigned. As a seed, assign to
. (We will see how this correlates with the problem.) Then define for each lattice point
its triplet thus:
It is evident that
is the number of ways to reach
from
. Therefore we compute vertex by vertex the triplets
with
.
Finally, after simple but tedious calculations, we find that
, so
.
See also
2005 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.