2002 AMC 12P Problems/Problem 9

The following problem is from both the 2002 AMC 12P #9 and 2002 AMC 10P #16, so both problems redirect to this page.

Problem

Two walls and the ceiling of a room meet at right angles at point $P.$ A fly is in the air one meter from one wall, eight meters from the other wall, and nine meters from point $P$. How many meters is the fly from the ceiling?

$\text{(A) }\sqrt{13} \qquad \text{(B) }\sqrt{14} \qquad \text{(C) }\sqrt{15} \qquad \text{(D) }4 \qquad \text{(E) }\sqrt{17}$

Solution

We can use the formula for the diagonal of a rectangular prism, or $d=\sqrt{a^2+b^2+c^2}$ The problem gives us $a=1, b=8,$ and $c=9.$ Solving gives us $9=\sqrt{1^2 + 8^2 + c^2} \implies c^2=9^2-8^2-1^2 \implies c^2=16  \implies c=\boxed{\textbf{(D) } 4}.$

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png