2003 AMC 12B Problems/Problem 18
Problem
Let and
be positive integers such that
The minimum possible value of
has a prime factorization
What is
Solution 1
Substitute into
. We then have
. Divide both sides by
, and it follows that:
Note that because and
are prime, the minimum value of
must involve factors of
and
only. Thus, we try to look for the lowest power
of
such that
, so that we can take
to the fifth root. Similarly, we want to look for the lowest power
of
such that
. Again, this allows us to take the fifth root of
. Obviously, we want to add
to
and subtract
from
because
and
are multiplied by
and divided by
, respectively. With these conditions satisfied, we can simply multiply
and
and substitute this quantity into
to attain our answer.
We can simply look for suitable values for and
. We find that the lowest
, in this case, would be
because
. Moreover, the lowest
should be
because
. Hence, we can substitute the quantity
into
. Doing so gets us:
Taking the fifth root of both sides, we are left with .
Solution 2
A simpler way to tackle this problem without all that modding is to keep the equation as:
As stated above, and
must be the factors 7 and 11 in order to keep
at a minimum. Moving all the non-y terms to the left hand side of the equation, we end up with:
The above equation means that must also contain only the factors 7 and 11 (again, in order to keep
at a minimum), so we end up with:
( and
are arbitrary variables placed in order to show that
could have more than just one 7 or one 11 as factors)
Since 7 and 11 are prime, we know that and
. The smallest positive combinations that would work are
and
. Therefore,
.
is correct.
Solution 3
Another way to solve this problem solve for x. First, we can divide both sides by 7 to get:
Next, we take the fifth root on both sides, which gets us:
Since we know x is a positive integer that we are trying to minimize, we can let y equal the smallest number that will make x an integer. In this case, we let (Make sure you see why this makes x the smallest integer possible!), which when plugged in, results in:
This gets us , so
~lucaswujc,
help from Technodoggo
Solution 4 (easy)
According to the problem, we have that and
must be a multiple of both
and
. Thus, in their prime factorisation, there must be
and
. Thus, we have
and
. Now, let
.
We can now divide both sides by 11 in our original equation
to get
. As we are only considering integers, we have
and
We can apply brute force to solve for and
as the numbers aren't big. For the first congruence, we find that
is the smallest number that satisfies, thus
. For the second congruence, we find that
is the smallest number that satisfies, thus
. Summarising, we get
.
See Also
2003 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.