2018 AMC 10B Problems/Problem 24
- The following problem is from both the 2018 AMC 12B #20 and 2018 AMC 10B #24, so both problems redirect to this page.
Contents
- 1 Problem
- 2 Diagram
- 3 Solution 1 (Area Addition)
- 4 Solution 2 (Area Subtraction)
- 5 Solution 3 (Area Subtraction)
- 6 Solution 4 (Area Subtraction)
- 7 Solution 5 (Partition the Hexagon)
- 8 Solution 6 (Partition the Hexagon)
- 9 Solution 7 (Trigonometry)
- 10 Solution 8 (Linear Transformation)
- 11 Video Solution
- 12 See Also
Problem
Let be a regular hexagon with side length
. Denote by
,
, and
the midpoints of sides
,
, and
, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of
and
?
Diagram
~MRENTHUSIASM
Solution 1 (Area Addition)
The desired area (hexagon ) consists of an equilateral triangle (
) and three right triangles (
and
).
Notice that (not shown) and
are parallel.
divides transversals
and
into a
ratio (This can be shown by similar triangles.). Thus, it must also divide transversal
and transversal
into a
ratio. By symmetry, the same applies for
and
as well as
and
In we see that
and
Our desired area becomes
Solution 2 (Area Subtraction)
Instead of directly finding the desired hexagonal area, can be found. It consists of three triangles and the desired hexagon. Given triangle rotational symmetry, the three triangles are congruent. See that
and
are equilateral, so
so
As
is a transversal running through
(use your imagination) and
we have
Then, is a
-
-
triangle. By HL congruence,
Note that
Then, the area of
is
There are three such triangles for a total area of
is
Find the side of
to be
so the area is
The answer is
~BJHHar
Solution 3 (Area Subtraction)
Now, if we look at the figure, we can see that the complement of the hexagon we are trying to find is composed of isosceles trapezoids (namely
and
) and
right triangles (namely
and
).
Finding the trapezoid's area, we know that one base of each trapezoid is just the side length of the hexagon, which is and the other base is
(it is halfway in between the side and the longest diagonal, which has length
) with a height of
(by using the Pythagorean Theorem and the fact that it is an isosceles trapezoid) to give each trapezoid having an area of
for a total area of
(Alternatively, we could have calculated the area of hexagon
and subtracted the area of
which, as we showed before, had a side length of
).
Now, we need to find the area of each of the small triangles, which, if we look at the triangle that has a vertex on is similar to the triangle with a base of
Using similar triangles, we calculate the base to be
and the height to be
giving us an area of
per triangle, and a total area of
Adding the two areas together, we get
Finding the total area, we get
Taking the complement, we get
Solution 4 (Area Subtraction)
We could also subtract and
from
Since and
we have
Since and
we have
from which
We can show that is
-
-
using a similar method,
and
are also
-
-
Since we have
Since and
we have
Note that
Therefore, we get
Solution 5 (Partition the Hexagon)
We partition hexagon into
congruent
triangles, as shown below:
Let the brackets denote areas. Note that the desired region contains
of the
small triangles, so the answer is
~AlexLikeMath ~MRENTHUSIASM
Solution 6 (Partition the Hexagon)
Dividing into two right triangles congruent to
we see that
Because
we have
From here, you should be able to tell that the answer will have a factor of
and
is the only answer that has a factor of
However, if you want to actually calculate the area, you would calculate
to be
so
Solution 7 (Trigonometry)
Notice, the area of the convex hexagon formed through the intersection of the triangles can be found by finding the area of the triangle formed by the midpoints of the sides and subtracting the smaller triangles that are formed by the region inside this triangle but outside the other triangle. First, let's find the area of the triangle formed by the midpoint of the sides. Notice, this is an equilateral triangle, thus all we need is to find the length of its side.
To do this, we look at the isosceles trapezoid outside this triangle but inside the outer hexagon. Since the interior angle of a regular hexagon is
and the trapezoid is isosceles, we know that the angle opposite is
and thus the side length of this triangle is
So the area of this triangle is
Now let's find the area of the smaller triangles. Notice, cuts off smaller isosceles triangles from the outer hexagon. The base of these isosceles triangles is perpendicular to the base of the isosceles trapezoid mentioned before, thus we can use trigonometric ratios to find the base and height of these smaller triangles, which are all congruent due to the rotational symmetry of a regular hexagon. The area is then
and the sum of the areas is
Therefore, the area of the convex hexagon is
Solution 8 (Linear Transformation)
If we try to coordinate bash this problem, it's going to look very ugly with a lot of radicals. However, we can alter and skew the diagram in such a way that all ratios of lengths and areas stay the same while making it a lot easier to work with. Then, we can find the ratio of the area of the wanted region to the area of then apply it to the old diagram.
The isosceles right triangle with a leg length of in the new diagram is
in the old diagram. We see that if we want to take the area of the new hexagon, we must subtract
from the area of
(the red triangles), giving us
However, we need to take the ratio of this area to the area of
which is
Now we know that our answer is
Video Solution
https://www.youtube.com/watch?v=yDbn9Mx2myw
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.