1996 AHSME Problems/Problem 20
Problem 20
In the xy-plane, what is the length of the shortest path from to
that does not go inside the circle
?
Solution
The pathway from to
will consist of three segments:
1) , where
is tangent to the circle at point
.
2) , where
is tangent to the circle at point
.
3) , where
is an arc around the circle.
The actual path will go , so the actual segments will be in order
.
Let be the center of the circle at
.
and
since
is on the circle. Since
is a right triangle with right angle
, we find that
. This means that
is a
triangle with sides
.
Thus, , and
. Since
,
and
lie on a straight line,
must be
as well. Thus, the arc that we travel is a
arc, and we travel
around the circle.
Thus, ,
, and
. The total distance is
, which is option
.
See also
1996 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.