1957 AHSME Problems/Problem 25
Problem
The vertices of have coordinates as follows:
, where
and
are positive.
The origin and point
lie on opposite sides of
. The area of
may be found from the expression:
Solution
To solve this problem, we could use the distance formula to find the lengths of the sides and then Heron's Formula to find the area of the triangle, but that solution seems messy and prone to mistakes with lots of square roots and polynomial expansions. Therefore, we look for a simpler, easier solution. Suppose and
. This makes
half of a rectangle with side lengths
and
, so it has an area of
. Plugging in
and
into all of the answer choices, the only one which returns
is
.
See Also
1957 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Problem 26 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.