1983 AHSME Problems/Problem 3
Problem 3
Three primes , and
satisfy
and
. Then
equals
Solution
We are given that and
are primes. In order for
and
to sum to another prime, either
or
has to be even, because the sum of two odd numbers would be even, and the only even prime is
(but
would have, as the only solution in positive integers,
, and
is not prime). Thus, with one of either
or
being even, either
or
must be
, and as
, we deduce
(as
is the smallest prime). This means the answer is
.
See Also
1983 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.