1972 USAMO Problems/Problem 3
Problem
A random number selector can only select one of the nine integers 1, 2, ..., 9, and it makes these selections with equal probability. Determine the probability that after selections (
), the product of the
numbers selected will be divisible by 10.
Solution
For the product to be divisible by 10, there must be a factor of 2 and a factor of 5 in there.
The probability that there is no 5 is .
The probability that there is no 2 is .
The probability that there is neither a 2 nor 5 is , which is included in both previous cases.
The only possibility left is getting a 2 and a 5, making the product divisible by 10.
By complementarity and principle of inclusion-exclusion, the probability of that is .
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1972 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.