1967 AHSME Problems/Problem 31
Problem
Let , where
,
, are consecutive integers and
. Then
is:
Solution
Let . Then
, which simplifies to
.
From the options, we want to test if is always a perfect square. Because the polynomial expression for
is quartic, if it is a perfect square, it would be the square of a quadratic expression. Thus,
could be written in the form
for some
.
Setting , we can compare coefficients. From the
coefficient, we get
. Note that if
works, so does
, so we can arbitrarily pick
.
We now have . Setting the cubic terms equal gives
, or
. This leaves
. We can quickly inspect the constant term to determine that
. We reject
, since the quadratic and linear terms won't match up, which leaves
as the only possibility - and, in fact, it works.
Thus, is always the square of an integer - namely
. This in turn means that
is always rational, which leaves choices
as the only possible correct answers.
The question now is whether , or
, is odd, even, or could be both. We have two cases for
:
If , then
. This means
.
If , then
, and
.
Either way, is an odd integer, and the answer is
See also
1967 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 30 |
Followed by Problem 32 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.