2013 USAMO Problems/Problem 4
Find all real numbers satisfying
Solution (Cauchy or AM-GM)
The key Lemma is:
for all
. Equality holds when
.
This is proven easily.
by Cauchy.
Equality then holds when .
Now assume that . Now note that, by the Lemma,
. So equality must hold in order for the condition in the problem statement to be met.
So
and
. If we let
, then we can easily compute that
.
Now it remains to check that
.
But by easy computations, , which is obvious.
Also
, which is obvious, since
.
So all solutions are of the form , and all permutations for
.
Remark: An alternative proof of the key Lemma is the following:
By AM-GM,
. Now taking the square root of both sides gives the desired. Equality holds when
.
Solution 2
WLOG, assume that . Let
and
. Then
,
and
. The equation becomes
Rearranging the terms, we have
Therefore
and
Express
and
in terms of
, we have
and
Easy to check that
is the smallest among
,
and
Then
,
and
Let
, we have the solutions for
as follows:
and permutations for all
--J.Z.
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.