1959 AHSME Problems/Problem 40
Contents
Problem
In ,
is a median.
intersects
at
so that
. Point
is on
. Then, if
,
equals:
Solution 1
Draw with
on
. We know that
, since
.
Likewise, since , we know that
.
Thus, , which is answer
.
Solution 2
Let and
. By Menelaus' Theorem on
and
, we know the following:
\begin{align*}
\frac{BD}{ED}*\frac{EC}{FC}*\frac{FA}{BA} &= 1 \\
\frac{2y}{y}*\frac{EC}{FC}*\frac{FA}{5+FA} &= 1 \\
\frac{EC}{FC}*\frac{FA}{5+FA} &= \frac{1}{2}
\end{align*}
By applying Menelaus again on
and
, we see that:
\begin{align*}
\frac{CA}{DA}*\frac{DB}{EB}*\frac{EF}{CF} &= 1 \\
\frac{2x}{x}*\frac{2y}{y}*\frac{CF-EC}{FC} &= 1 \\
1-\frac{EC}{FC} &= \frac{1}{4} \\
\frac{EC}{FC} &= \frac{3}{4}
\end{align*}
Substituting
for
into the previous equation, we can now solve for
:
\begin{align*}
\frac{EC}{FC}*\frac{FA}{5+FA} &= \frac{1}{2} \\
\frac{3}{4}*\frac{FA}{5+FA} &= \frac{1}{2} \\
\frac{FA}{5+FA} &= \frac{2}{3} \\
3FA &= 10+2FA \\
FA &= 10
\end{align*}
Because
,
.
See also
1959 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 39 |
Followed by Problem 41 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.