1991 AIME Problems/Problem 6
Contents
Problem
Suppose is a real number for which
![$\left\lfloor r + \frac{19}{100} \right\rfloor + \left\lfloor r + \frac{20}{100} \right\rfloor + \left\lfloor r + \frac{21}{100} \right\rfloor + \cdots + \left\lfloor r + \frac{91}{100} \right\rfloor = 546.$](http://latex.artofproblemsolving.com/d/4/9/d49bf9d61cafb77fc2043857f815732ddef15f57.png)
Find . (For real
,
is the greatest integer less than or equal to
.)
Solution (Hopefully Intuitive)
THIS SOLUTION IS INCORRECT, PLEASE CORRECT IT IF YOU HAVE TIME! ~Arcticturn
Solution 1
There are numbers in the sequence. Since the terms of the sequence can be at most
apart, all of the numbers in the sequence can take one of two possible values. Since
, the values of each of the terms of the sequence must be either
or
. As the remainder is
,
must take on
of the values, with
being the value of the remaining
numbers. The 39th number is
, which is also the first term of this sequence with a value of
, so
. Solving shows that
, so
, and
.
Solution 2 (Faster)
Recall by Hermite's Identity that for positive integers
, and real
. Similar to above, we quickly observe that the last 35 take the value of 8, and remaining first ones take a value of 7. So,
and
. We can see that
. Because
is at most 7, and
is at least 8, we can clearly see their values are
and
respectively.
So,
, and
. Since there are 19 terms in the former equation and 8 terms in the latter, our answer is
Note
In the contest, you would just observe this mentally, and then calculate , hence the speed at which one can carry out this solution.
See also
1991 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.