2003 USAMO Problems/Problem 6
Problem
At the vertices of a regular hexagon are written six nonnegative integers whose sum is 2003. Bert is allowed to make moves of the following form: he may pick a vertex and replace the number written there by the absolute value of the difference between the numbers written at the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the number 0 appears at all six vertices.
Solution
Assume the original numbers are . Since
is odd, either
or
must be odd. WLOG let
be odd and
.
Case 1
. Define Operation A as the sequence of moves from Step 1 to Step 3, shown below:
![[asy] size(300); defaultpen(fontsize(9)); label("$d$",expi(0),(0,0)); label("$c$",expi(pi/3),(0,0),red); label("$b$",expi(2*pi/3),(0,0)); label("$a$",expi(pi),(0,0),red); label("$f$",expi(4*pi/3),(0,0)); label("$e$",expi(5*pi/3),(0,0),red); label("Step 1",(0,-2),(0,0)); label("$c-e$",(5,0)+expi(0),(0,0)); label("$c$",(5,0)+expi(pi/3),(0,0),red); label("$a-c$",(5,0)+expi(2*pi/3),(0,0)); label("$a$",(5,0)+expi(pi),(0,0),red); label("$a-e$",(5,0)+expi(4*pi/3),(0,0)); label("$e$",(5,0)+expi(5*pi/3),(0,0),red); label("Step 2",(5,-2),(0,0)); label("$c-e$",(10,0)+expi(0),(0,0)); label("$c$",(10,0)+expi(pi/3),(0,0),red); label("$a-c$",(10,0)+expi(2*pi/3),(0,0)); label("$c-e$",(10,0)+expi(pi),(0,0),red); label("$a-e$",(10,0)+expi(4*pi/3),(0,0)); label("$a-c$",(10,0)+expi(5*pi/3),(0,0),red); label("Step 3",(10,-2),(0,0)); [/asy]](http://latex.artofproblemsolving.com/8/f/9/8f925ff026acc1ee35045fc2af2eca84bcbbd74e.png)
Notice that Operation A changes the numbers to
and they are all nonnegative, since
. Their sum changes from
to
; it decreases as long as
. If we repeat Operation A enough times, its sum will decrease and eventually we will arrive at a point where at least one of the numbers in the positions originally occupied by
has become a 0.
Case 2
and
. Define Operation B as the sequence of moves from Step 1 to Step 3, shown below:
![[asy] size(300); defaultpen(fontsize(9)); label("$d$",expi(0),(0,0)); label("$c$",expi(pi/3),(0,0),red); label("$b$",expi(2*pi/3),(0,0)); label("$a$",expi(pi),(0,0),red); label("$f$",expi(4*pi/3),(0,0)); label("$0$",expi(5*pi/3),(0,0),red); label("Step 1",(0,-2),(0,0)); label("$c$",(5,0)+expi(0),(0,0)); label("$c$",(5,0)+expi(pi/3),(0,0),red); label("$a-c$",(5,0)+expi(2*pi/3),(0,0)); label("$a$",(5,0)+expi(pi),(0,0),red); label("$a$",(5,0)+expi(4*pi/3),(0,0)); label("$0$",(5,0)+expi(5*pi/3),(0,0),red); label("Step 2",(5,-2),(0,0)); label("$c$",(10,0)+expi(0),(0,0)); label("$\begin{array}{l}2c-a\\ a-2c\end{array}$",(10,0)+expi(pi/3),(0,0),red); label("$a-c$",(10,0)+expi(2*pi/3),(0,0)); label("$c$",(10,0)+expi(pi),(0,0),red); label("$a$",(10,0)+expi(4*pi/3),(0,0)); label("$0$",(10,0)+expi(5*pi/3),(0,0),red); label("Step 3",(10,-2),(0,0)); [/asy]](http://latex.artofproblemsolving.com/f/3/c/f3c1dd6813357c25a8d89fe07c6438b283bd36ce.png)
where in Step 3, we take the nonnegative choice of or
.
is changed to either
or
. If we have
, their sum is
and this is less than
(the original sum) unless
, but
since the original sum
is odd by assumption. If we have
, their sum is
, which is less than
. Operation B applied repeatedly will cause either
or
to become
.
Case 3
and
. Define Operation C as the sequence of moves from Step 1 to Step 4, shown below:
![[asy] size(400); defaultpen(fontsize(9)); label("$d$",expi(0),(0,0)); label("$0$",expi(pi/3),(0,0),red); label("$b$",expi(2*pi/3),(0,0)); label("$a$",expi(pi),(0,0),red); label("$f$",expi(4*pi/3),(0,0)); label("$0$",expi(5*pi/3),(0,0),red); label("Step 1",(0,-2),(0,0)); label("$0$",(5,0)+expi(0),(0,0)); label("$0$",(5,0)+expi(pi/3),(0,0),red); label("$a$",(5,0)+expi(2*pi/3),(0,0)); label("$a$",(5,0)+expi(pi),(0,0),red); label("$a$",(5,0)+expi(4*pi/3),(0,0)); label("$0$",(5,0)+expi(5*pi/3),(0,0),red); label("Step 2",(5,-2),(0,0)); label("$0$",(10,0)+expi(0),(0,0)); label("$0$",(10,0)+expi(pi/3),(0,0),red); label("$a$",(10,0)+expi(2*pi/3),(0,0)); label("$0$",(10,0)+expi(pi),(0,0),red); label("$a$",(10,0)+expi(4*pi/3),(0,0)); label("$0$",(10,0)+expi(5*pi/3),(0,0),red); label("Step 3",(10,-2),(0,0)); label("$0$",(15,0)+expi(0),(0,0)); label("$0$",(15,0)+expi(pi/3),(0,0),red); label("$0$",(15,0)+expi(2*pi/3),(0,0)); label("$0$",(15,0)+expi(pi),(0,0),red); label("$0$",(15,0)+expi(4*pi/3),(0,0)); label("$0$",(15,0)+expi(5*pi/3),(0,0),red); label("Step 4",(15,-2),(0,0)); [/asy]](http://latex.artofproblemsolving.com/2/5/e/25e832cee8c23269dcaa1c2a232ef02becbc507c.png)
See also
2003 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.