2019 AMC 10A Problems/Problem 7
- The following problem is from both the 2019 AMC 10A #7 and 2019 AMC 12A #5, so both problems redirect to this page.
Contents
Problem
Two lines with slopes and
intersect at
. What is the area of the triangle enclosed by these two lines and the line
Solution 1
Let's first work out the slope-intercept form of all three lines:
and
implies
so
, while
implies
so
. Also,
implies
. Thus the lines are
and
.
Now we find the intersection points between each of the lines with
, which are
and
. Using the distance formula and then the Pythagorean Theorem, we see that we have an isosceles triangle with base
and height
, whose area is
.
Solution 2
Like in Solution 1, we determine the coordinates of the three vertices of the triangle. The coordinates that we get are:
. Now, using the Shoelace Theorem, we can directly find that the area is
.
Solution 3
Like in the other solutions, solve the systems of equations to see that the triangle's two other vertices are at and
. Then apply Heron's Formula: the semi-perimeter will be
, so the area reduces nicely to a difference of squares, making it
.
Solution 4
Like in the other solutions, we find, either using algebra or simply by drawing the lines on squared paper, that the three points of intersection are ,
, and
. We can now draw the bounding square with vertices
,
,
and
, and deduce that the triangle's area is
.
Solution 5
Like in other solutions, we find that the three points of intersection are ,
, and
. Using graph paper, we can see that this triangle has
boundary lattice points and
interior lattice points. By Pick's Theorem, the area is
.
Solution 6
Like in other solutions, we find the three points of intersection. Label these ,
, and
. By the Pythagorean Theorem,
and
. By the Law of Cosines,
Therefore,
, so the area is
.
Solution 7
Like in other solutions, we find that the three points of intersection are ,
, and
. The area of the triangle is half the absolute value of the determinant of the matrix determined by these points.
Solution 8
Like in other solutions, we find the three points of intersection. Label these ,
, and
. Then vectors
and
. The area of the triangle is half the magnitude of the cross product of these two vectors.
Solution 9
Like in other solutions, we find that the three points of intersection are ,
, and
. By the Pythagorean theorem, this is an isosceles triangle with base
and equal length
. The area of an isosceles triangle with base
and equal length
is
. Plugging in
and
,
Solution 10 (Trig)
Like in other solutions, we find the three points of intersection. Label these ,
, and
. By the Pythagorean Theorem,
and
. By the Law of Cosines,
Therefore,
. By the extended Law of Sines,
Then the area is
.
Solution 11
The area of a triangle formed by three lines,
is the absolute value of
Plugging in the three lines,
the area is the absolute value of
Source: Orrick, Michael L. “THE AREA OF A TRIANGLE FORMED BY THREE LINES.” Pi Mu Epsilon Journal, vol. 7, no. 5, 1981, pp. 294–298. JSTOR, www.jstor.org/stable/24336991.
Solution 12 (Heron's Formula)
Like in other solutions, we find that our triangle is isosceles with legs of and base
. Then, the semi - perimeter of our triangle is,
Applying Heron's formula, we find that the area of this triangle is equivalent to
~rbcubed13
Video Solution 1
Education, the Study of Everything
Video Solution 2
~savannahsolver