2004 AMC 12A Problems/Problem 8

The following problem is from both the 2004 AMC 12A #8 and 2004 AMC 10A #9, so both problems redirect to this page.

Problem

In the overlapping triangles $\triangle{ABC}$ and $\triangle{ABE}$ sharing common side $AB$, $\angle{EAB}$ and $\angle{ABC}$ are right angles, $AB=4$, $BC=6$, $AE=8$, and $\overline{AC}$ and $\overline{BE}$ intersect at $D$. What is the difference between the areas of $\triangle{ADE}$ and $\triangle{BDC}$?

[asy] size(150); defaultpen(linewidth(0.4)); //Variable Declarations pair A, B, C, D, E;  //Variable Definitions A=(0, 0); B=(4, 0); C=(4, 6); E=(0, 8); D=extension(A,C,B,E);  //Initial Diagram draw(A--B--C--A--E--B); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,3N); label("$E$",E,NW);  //Side labels label("$4$",A--B,S); label("$8$",A--E,W); label("$6$",B--C,ENE); [/asy]

$\mathrm {(A)}\ 2 \qquad \mathrm {(B)}\ 4 \qquad \mathrm {(C)}\ 5 \qquad \mathrm {(D)}\ 8 \qquad \mathrm {(E)}\ 9 \qquad$

Solutions

Solution 0

Looking, we see that the area of $[\triangle EBA]$ is 16 and the area of $[\triangle ABC]$ is 12. Set the area of $[\triangle ADB]$ to be x. We want to find $[\triangle ADE]$ - $[\triangle CDB]$. So, that would be $[\triangle EBA]-[\triangle ADB]=16-x$ and $[\triangle ABC]-[\triangle ADB]=12-x$. Therefore, $[\triangle ADE]-[\triangle DBC]=(16-x)-(12-x)=16-x-12+x= \boxed{\mathrm{(B)}\ 4}$

~ MathKatana

Solution 1

Since $AE \perp AB$ and $BC \perp AB$, $AE \parallel BC$. By alternate interior angles and $AA\sim$, we find that $\triangle ADE \sim \triangle CDB$, with side length ratio $\frac{4}{3}$. Their heights also have the same ratio, and since the two heights add up to $4$, we have that $h_{ADE} = 4 \cdot \frac{4}{7} = \frac{16}{7}$ and $h_{CDB} = 3 \cdot \frac 47 = \frac {12}7$. Subtracting the areas, $\frac{1}{2} \cdot 8 \cdot \frac {16}7 - \frac 12 \cdot 6 \cdot \frac{12}7 = 4$ $\Rightarrow$ $\boxed{\mathrm{(B)}\ 4}$.

Solution 2

Let $[X]$ represent the area of figure $X$. Note that $[\triangle BEA]=[\triangle ABD]+[\triangle ADE]$ and $[\triangle BCA]=[\triangle ABD]+[\triangle BDC]$.

$[\triangle ADE]-[\triangle BDC]=[\triangle BEA]-[\triangle BCA]=\frac{1}{2}\times8\times4-\frac{1}{2}\times6\times4= 16-12=4\Rightarrow\boxed{\mathrm{(B)}\ 4}$

Solution 3 (coordbash)

Put figure $ABCDE$ on a graph. $\overline{AC}$ goes from (0, 0) to (4, 6) and $\overline{BE}$ goes from (4, 0) to (0, 8). $\overline{AC}$ is on line $y = 1.5x$. $\overline{BE}$ is on line $y = -2x + 8$. Finding intersection between these points,

$1.5x = -2x + 8$.

$3.5x = 8$

$x = 8 \times \frac{2}{7}$

$= \frac{16}{7}$

This gives us the x-coordinate of D. So, $\frac{16}{7}$ is the height of $\triangle ADE$, then area of $\triangle ADE$ is $\frac{16}{7} \times 8 \times \frac{1}{2}$ $= \frac{64}{7}$

Now, the height of $\triangle BDC$ is $4-\frac{16}{7} = \frac{12}{7}$ And the area of $\triangle BDC$ is $6 \times \frac{12}{7} \times \frac{1}{2} = \frac{36}{7}$

This gives us $\frac{64}{7} - \frac{36}{7} = 4$

Therefore, the difference is $4$

Solution 4

We want to figure out $Area(\triangle ADE) - Area(\triangle BDC)$. Notice that $\triangle ABC$ and $\triangle BAE$ "intersect" and form $\triangle ADB$.

This means that $Area(\triangle BAE) - Area(\triangle ABC) = Area(\triangle ADE) - Area(\triangle BDC)$ because $Area(\triangle ADB)$ cancels out, which can be seen easily in the diagram.

$Area(\triangle BAE) = 0.5 * 4 * 8 = 16$

$Area(\triangle ABC) = 0.5 * 4 * 16 = 12$

$Area(\triangle BDC) - Area(\triangle ADE) = 16 - 12 =\boxed{\mathrm{(B)}\ 4}$

Video Solution

https://youtu.be/DlA71MBSviU

Education, the Study of Everything


See also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png