2008 AMC 12B Problems/Problem 9
Problem
Points and
are on a circle of radius
and
. Point
is the midpoint of the minor arc
. What is the length of the line segment
?
Solutions
Solution 1
Let be the angle that subtends the arc
. By the law of cosines,
implies
.
The half-angle formula says that
. The law of cosines tells us
, which is answer choice
.
Solution 2
Define as the midpoint of line segment
, and
the center of the circle. Then
,
, and
are collinear, and since
is the midpoint of
,
and so
. Since
,
, and so
.
![[asy] pen d = linewidth(0.7); pathpen = d; pointpen = black; pen f = fontsize(9); path p = CR((0,0),5); pair O = (0,0), A=(5,0), B = IP(p,CR(A,6)), C = IP(p,CR(A,3)), D=IP(A--B,O--C); D(p); D(MP("A",A,E)--D(MP("O",O))--MP("B",B,NE)--cycle); D(A--MP("C",C,ENE),dashed+d); D(O--C,dashed+d); D(rightanglemark(O,D(MP("D",D,W)),A)); MP("5",(A+O)/2); MP("3",(A+D)/2,SW); [/asy]](http://latex.artofproblemsolving.com/7/2/f/72fbe8b90fcde66500984b26ba2b38b0f7765119.png)
See Also
2008 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.