2003 AIME I Problems/Problem 9
Problem
An integer between and
, inclusive, is called balanced if the sum of its two leftmost digits equals the sum of its two rightmost digits. How many balanced integers are there?
Solution 1
If the common sum of the first two and last two digits is , such that
, there are
choices for the first two digits and
choices for the second two digits (since zero may not be the first digit). This gives
balanced numbers. If the common sum of the first two and last two digits is
, such that
, there are
choices for both pairs. This gives
balanced numbers. Thus, there are in total
balanced numbers.
Both summations may be calculated using the formula for the sum of consecutive squares, namely .
Solution 2 (Painful Casework)
Call the number . Then
. Set
.
Clearly, .
If :
is not acceptable.
If : The only case is
or
. 2 choices.
If : then since
,
or
. There are 3 choices for
:
.
here.
If : Clearly,
because if so, the sum will be even, not odd. Counting
, we have
choices. Subtracting that, we have
choices. Since it doesn't matter whether
or
, we have 4 choices for
. So
here.
If : Continue as above.
choices for
.
choices for
.
here.
If : You get the point.
.
If :
.
If :
.
If :
.
If :
.
Now we need to be careful because if ,
is not valid. However, we don't have to worry about
.
If :
. Same thing for
.
.
If : We start at
. So
.
Continue this pattern until . Add everything up: we have
.
~hastapasta
Solution 3
We ignore the requirement that the first digit is non-zero, and do casework on the sum of the sum of the pairs of digits.
If two digits and
sum to
, we have
possibility:
If , we have
possibilities:
and
:
,
, and
are the only
possibilities.
We notice a pattern: for all , there are
ordered pairs of digits
such that
. Then, testing for
, we notice that there are
ordered pairs with a sum of
.
So the number of ways to pick digits satisfying the constraint is
We have to subtract out the cases where the first digit is , which is
So our answer is
This solution takes some inspiration from dice. In a way, we are counting the number of ways to roll a given number with a pair of -sided dice.
~jd9
See also
2003 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.