Radon's Inequality

Radon's Inequality states:

\[\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p}\]

It is a direct consequence of Hölder's Inequality, and a generalization of Titu's Lemma (for p=2, it is just that).

Proof

Just apply Hölder for:

\[(b_1 + b_2 + \cdots+ b_n )^{p/(p+1)}\left(\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p }\right)^{1/(p+1)} \geq a_1 + a_2 + \cdots+ a_n  \Leftrightarrow\] \[\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p}\]

Further Generalizations

\[\frac{ a_1^{p+m} } { b_1^p } + \frac{ a_2 ^{p+m} } { b_2^p } + \cdots + \frac{ a_n ^{p+m} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+m} } { (b_1 + b_2 + \cdots+ b_n )^p}\]